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In recent years, considerable interest has been devoted to the Guest N rad-
creation of organic basetholecular deices that have the OO
potential to function as information storage/switching systems o
in molecular scale computérand other applicatior’s.To this Figure 1. NaphthalimideNox bound to anthracene receptérand
end, a number of devices have been constructed, includingnaphthalimide radical anioN:q- bound to acylated diaminopyridine

molecular shuttles, switches, and wifes. receptorD.
Biological systems use the interplay of redox and molecular

recognition to regulate a wide variety of processes and e
transformations. In our continued efforts to understand these @
systems, we have designed synthetic receptors where non- -e’

covalent interactions (hydrogen-bonding and aromatic stacking)

have been demonstrated to modulate the redox potentials ofFigure 2. Schematic of redox-mediated recognition.

flavin cofactor$® Using these receptors, we have established

that the flavin radical anion is stabilized by hydrogen bonding.  In our initial studies, we determined the thermodynamic
Concurrent with this stabilization, we observed enhanced constants for the isolated two-component systems. Association
recognition of the radical anion relative to the fully oxidized constantsz) of Nox with A andD were obtained via NMR
flavin.62 This effect was quantified in an analogous system by titration experiments in CDG(Table 1)¢ It was found thatA
Smith and co-workers. In recent studies, we have observed binds Nox more than an order of magnitude stronger tian
destabilization of the flavin radical anion by aromatic stackthg.  due to favorable aromatiearomatic interactions.

The opposite effects of hydrogen bonding and aromatic  To quantify the binding oN.4-, we investigated the change
stacking on flavin reduction potentials suggest a complemen- jn standard reduction potentidEs) of Noy upon addition ofA
tarity in the modulation of recognition upon redox state change. andD. Addition of D resulted in a significant shift dyz to
To examine this effect and explore the control of molecular |ess negative values, indicating substantial stabilization of the
recognition through redox processes, we have created a systenadical anion. Addition ofA, in contrast, had little effect on
where the competition between two hosts is regulated by the the reduction potential of naphthalimide (Table 1). This results
redox state of the guest. The two hosts used in this study werefrom the offsetting favorable effect of hydrogen bonding and
anthracene receptdx and acylated diaminopyridine receptor ynfavorable effect of aromatic stacking on the reduction process.
D. Both hosts can undergo three-point hydrogen-bonding Using the association constanits)andEy, values, it is possible
interactions with guest naphthalimide, either in its oxidixikgd to construct thermodynamic squares for the two hgstest
or radical aniorN,g- form (Figure 1). In addition, hosA is systems (Figure 3.

capable of forming aromatic. gtaqking interactions. We report  pq thermodynamic squares in the front and rear describe
here redox-controlled recognition in this system and the creation i,o molecular recognition and redox reactiondlgf andNiaq-

of a three-component, two-pole, molecular switch (Figure 2). ;. he presence ob andA respectively. TheAGs and AGy
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Table 1. Binding Constants, Reduction Potentials, and Energetics for Redox Cube

Communications to the Editor

process Ei2 (MV)Pe AG (kcal/mol)

D + Nox— [D*Noy] AG; =—-2.95+0.01

[D'Nox] e [D'Nradf] —1657+ 1° AG, =38.21+ 0.02
D + Nrag~ — [D*Nrag] 41000+ 3000 AG; = —6.24+ 0.05!

D + Nox— D + Nrag— —1800+ 2 AG,=41.51+0.05

A + Nox— [A*Noy AGy = —4.42+ 0.09

[A*No] = [A*Nraa] —18024+ 4f AGy = 41.56+ 0.09
A + Npag-— [A‘Nrad’] AGz = —4.37+ 0.14

A + Nox— A + Nyag— —1800+ 2 AGy = 41.51+ 0.05

aCDClz, 23 °C, imide peak followed? In CH,Cl,, tetrabutylammonium perchlorate carrier (0.1 My,f] = 1 x 1073 M, 23 °C. ¢ Referenced
to ferrocene as an internal standat@alculated according tAG; + AG; + (—AG3) + (—AG,) = 0; AG; = AG; + AG, — AG,. ¢ Host added
until limiting value was reachedP] = 4 x 102 M. f[A] =5 x 1073 M.1°

AGy
Attox—=—1AMNod a)
e 1.5 keat/mol
D+Ngy —.,—>1—[D'Nox] .
[0} @
< il
b)
] &
Aj‘," rad™ —— Gy {ANyagr]
4 -1.9 keal/mol

D+Nyag- ——e——[D'Nrac-]
-AGg

Figure 3. Redox cube predicting redox-specific binding.
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Figure 5. SEEPR in CHCI,, tetrabutylammonium perchlorate carrier
(0.1 M), [No] = 1073 M, low-field half of SEEPR spectra: (@raq;
(b) Nrag- + A, [A] = 1072 M; (C) Nyag~ + D, [D] = 1072 M; (d) Nrag-
+A+D, [A] =[D] =103 M.
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Figure 4. *H NMR spectra showing a 1:1 host mixtureAdfandD in
the absence (1) and presence (2)Ngf guest.

changes in hydrogen-bonding and aromatic-stacking effects. In
the A—N complex, the favorable aromatic-stacking interactions
between the electron-podd,x and the electron-richA are

. . . . converted to unfavorable stacking interactions between the
of the hyperfine coupling constants (Figure!3)Complexation : B .
; - i electron-richN,g- and the electron-riciA.
by A also perturbs the spin density in a characteristic way, .
leading to a distinctive spectrum. Nf.q- is present in different In summary, we have demonstrated host selection through
forms (unbound, bound to receptér or D), the resulting choice of guest redox state. Thls_system provides a three-
spectrum is a superposition of the spectra of these forms in theComponent, two-pole, molecular switch where the recognition

appropriate ratios, which can be quantified through spectrum Process can be controlled electrochemically. Applications of

from bulk electrolysis of a 1:1:1 mixture dflox, A, and D read-write system are underway and will be reported in due

indicates a 87:13 ratio preference Nf,q- for binding to D, course.

validating our prediction? _ _
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